Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451755

RESUMO

Seed maturation comprises important developmental processes, such as seed filling and the acquisition of seed germination capacity, desiccation tolerance, longevity, and dormancy. The molecular regulation of these processes is tightly controlled by the LAFL transcription factors, among which ABSCISIC ACID INSENSITIVE 3 (ABI3) was shown to be involved in most of these seed maturation processes. Here, we studied the ABI3 gene from Medicago truncatula, a model legume plant for seed studies. With the transcriptomes of two loss-of-function Medicago abi3 mutants, we were able to show that many gene classes were impacted by the abi3 mutation at different stages of early, middle, and late seed maturation. We also discovered three MtABI3 expression isoforms, which present contrasting expression patterns during seed development. Moreover, by ectopically expressing these isoforms in Medicago hairy roots generated from the abi3 mutant line background, we showed that each isoform regulated specific gene clusters, suggesting divergent molecular functions. Furthermore, we complemented the Arabidopsis abi3 mutant with each of the three MtABI3 isoforms and concluded that all isoforms were capable of restoring seed viability and desiccation tolerance phenotypes even if not all isoforms complemented the seed color phenotype. Taken together, our results allow a better understanding of the ABI3 network in Medicago during seed development, as well as the discovery of commonly regulated genes from the three MtABI3 isoforms, which can give us new insights into how desiccation tolerance and seed viability are regulated.

2.
J Exp Bot ; 65(8): 2161-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24604737

RESUMO

Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.


Assuntos
Ácido Abscísico/metabolismo , Medicago truncatula/fisiologia , Óxido Nítrico/metabolismo , Prolina/metabolismo , Transdução de Sinais , Cromatografia Líquida de Alta Pressão , Secas , Germinação , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Prolina/genética , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Água/metabolismo
3.
J Exp Bot ; 64(14): 4559-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24043848

RESUMO

In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the abscisic acid insensitive3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4 g H2O g DW(-1). Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds.


Assuntos
Adaptação Fisiológica , Castanospermum/fisiologia , Medicago truncatula/fisiologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Castanospermum/genética , Cotilédone/metabolismo , Dessecação , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Mutação/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Análise de Sequência de DNA , Transcriptoma/genética , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...